

Data for Accountability,
Transparency and Impact
Monitoring (DATIM)

Validation of SIMS Data
Payloads for DATIM Using R
Validation Package

May 2019

U.S. Department of State
U.S. Office of Global AIDS
Coordinator (OGAC)

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwje-YnVi4fXAhVP4GMKHduRC3sQjRwIBw&url=https://www.poz.com/article/pepfar-2016-annual-report-congress&psig=AOvVaw1beVzkga_H9DbYcnGIbsu4&ust=1508859976740600

Validation of SIMS Data Payloads for DATIM Using R Validation Package i

Table of Contents

What is the SIMS Import Validation R Package? .. 2

Getting Started .. 4

Step 1: Create a secrets file .. 6

Step 2: Create an R file ... 6

Validation Errors ... 21

Validation of SIMS Data Payloads for DATIM Using R Validation Package 2

Validation of Data Payloads for DATIM Using R Validation Package

DATIM is based on the DHIS2 software and therefore is capable of importing different types of data,
including CSV, JSON, and XML, as well as ADX formats. Users who want to use the data import
capabilities of DATIM should familiarize themselves with the various formats that DHIS2 supports and
the syntax of each format.

DATIM has strict controls on data imports, including a requirement to adhere to the numerous
validation rules of the system. An R package has been created to help data importers prepare their files
for submission to DATIM.

What is the SIMS Import Validation R Package?

The SIMS import validation R package is a program library written using R language to validate countries’
data against the business logic of DATIM prior to importing the data into the DATIM system.

Its libraries provide an abstraction layer to the various validation routines that are necessary to import
data into DATIM. These scripts, to a large extent, emulate the logic of the DHIS2 server.

Basic functions are exposed to allow users to determine whether their data contain invalid metadata
(invalid data elements, incorrect disaggregations, inactive mechanisms, invalid organization units),
incompatible data types.

Functions that we will be using for SIMS validation are as follows:

 d2Parser: This is a general-purpose function to load the different data formats that DATIM
accepts and to standardize the format so we can use other validation functions on the data. This
function takes the following input parameters:

 File name: Path and name of the SIMS import file.
 Type: Type of the import file. It should be “json,” “csv,” or “xml.”
 Id Scheme: Identification scheme of the file. The easiest way to identify this is to open

the file in a text editor and see what id scheme the payload is using. This could be
“code” or “id.” Note: In addition to idScheme, which applies to all metadata, the
function also accepts the optional dataElementIdScheme and orgUnitIdScheme. This
allows multiple schemes to be mixed in one file (e.g., using “code” for data elements but
“id” for org units). These schemes default to “id” if “code” is not provided.

 Org Unit ID: UID of the country (operating unit) for which data are being validated. This
field is optional and can be left blank. The d2Parser function derives the org unit ID from
the user specified in the secrets file and uses the operating unit to which the user has
access.

 invalidData: Whether to exclude records that have either missing or NA entries. Default
is FALSE.

 csv_header: If the import file is a CSV-formatted file, this indicates whether the file
includes the header row. Argument is optional, and the default value is TRUE.

 sims2Parser: will parse a semi-compliant DHIS2 CSV file and transform it into a standard data
frame which can be used in subsequent DATIM validation routines. The difference with d2Parser
is that an extra (non-standard) field will be introduced to record the SIMS assessment. This will
in turn be used to deduplicate visits which occur at the same site + mechanism + date

Validation of SIMS Data Payloads for DATIM Using R Validation Package 3

combination. This function will automatically decollide these types of visits, by shifting the
period attribute of one of the overlapping assessments to the nearest available date.

o filename: Location of the payload to be imported. Should be a valid SIMS import file.
o dataElementIdScheme: Coding scheme of the data elements in the import file, it should

be one of either code, name, shortName, or id. The default is "id", which assumes data
elements to be defined using their DATIM UIDs.

o orgUnitIdScheme: Coding scheme of the organization units. It should be one of the
following: code, name, shortName, or id. The default is “id”, which assumes that the
organization unit identifiers in the import file are DATIM UIDs. Note, that UID is
recommended coding scheme for organization units, as other schemes do not
guarantee unique identification.

o idScheme: Mapping scheme to apply to all metadata objects (unless specific metadata
objects are overridden by dataElementIdScheme and/or orgUnitIdScheme) to be used
for all metadata objects in the import file.

o invalidData: Specifies whether the resulting data frame should include records that are
identified invalid by the parser (records with missing identifiers, or NAs). Default value is
FALSE.

o hasHeader: TRUE by default. Should be set to FALSE if the file does not contain the
header row.

o isoPeriod: period to be used for date shift boundaries. If not provided, no boundaries
are set.

 getDataElementMap: Utility function of extraction of data element ids, codes, shortName and

names.
 checkDataElementOrgunitValidity: This produces a data frame containing records that contain

data elements that are not valid for a given org unit (e.g., community-level indicator specified
for a facility organization unit).

 checkValueTypeCompliance: This produces a data frame containing records that have values
that do not meet the value type specifications defined for the data element.

 checkMechanismValidity: This returns a data frame containing records that have attribute
option combos (funding mechanisms) that are not valid. Mechanism validity issues include
mechanism’s expiry period being prior to the period of the data record, invalid operating unit,
etc.

Validation of SIMS Data Payloads for DATIM Using R Validation Package 4

Getting Started

Below is a diagram that depicts steps that need to be followed in order to use the datim validation
package to validate import data.

Validation of SIMS Data Payloads for DATIM Using R Validation Package 5

Validation of SIMS Data Payloads for DATIM Using R Validation Package 6

To get started, please install either RStudio (https://www.rstudio.com) or R console (https://cran.r-
project.org). Both are free to download and use.

To get started with DATIM validation, users will need to have installed the R package “datimvalidation.”
The source code for this library can be found at https://github.com/jason-p-pickering/datim-validation.

Users will need an active Internet connection and an active DATIM user name to use the
“datimvalidation” package. Metadata will be retrieved from the DATIM server using the user’s username
and password and stored in a local cache. After the objects are cached, the package can be used offline
until the cache is invalidated. By default, cached objects are stored for a week and then invalidated.

Please follow these steps to use the datimvalidation R script to validate SIMS data.

Step 1: Create a secrets file

To get started, create a “secrets” file, which will contain the authentication information required to
access DATIM. You should keep this in a secure place on your computer, because it will require storing
the username and password you use to access DATIM as a file on your disk. If you are unable to securely
store this file, you can also enter your username and password through a dialog. A secrets file should a
single JSON file that looks like this:

{

 "dhis": {

 "baseurl": "https://dev-de.datim.org",

 "username": "admin",

 "password": "district"

 }

}

Step 2: Create an R file

Install a tool such as RStudio for running R programs.

Create a file with .R extension and add the following as content and provide the location of your secrets
file. You will use this file to invoke functions that you will use to validate your data.

require(devtools)

install_github("jason-p-pickering/datim-validation", force=TRUE)

require(datimvalidation)

require(sqldf)

secrets="/path to secret file/secret.json"

loadSecrets(secrets)

Replace “/path to secret file/secret.json” with the location of your secrets file and the name of your file,
and then save your .R file.

The first four lines of the script load all libraries that are required to run the script.

Open your .R file with RStudio.

Select all of the code in the file and click on the “Run” button.

https://www.rstudio.com/
https://cran.r-project.org/
https://cran.r-project.org/
https://github.com/jason-p-pickering/datim-validation

Validation of SIMS Data Payloads for DATIM Using R Validation Package 7

If the secret file contains the correct credentials and all goes well, you will see the code below in the
console window.

As mentioned earlier, cached metadata objects are stored for a week and then invalidated. If users think
that the cache contains old code lists, they can force the script to clear the cache after loading the datim
validation library by running this code.

cleareCache(force=TRUE)

The following script is an example that uses all available validation procedures from the library, as well
as additional checks to verify the integrity of an import file. You can copy and paste the following code
to the end of the .R file to run it.

The beginning of the file includes a number of variables that you should modify according to your needs,
especially the path and the type. Note that the period expected by DATIM in import files is an ISO
calendar period. For SIMS, period is expected to be daily, in YYYYMMDD format. For example, January
27th, 2019 should be coded as 20190127.

Validation of SIMS Data Payloads for DATIM Using R Validation Package 8

Please refer to the data import reference documentation (code lists) for the list of data set UIDs. The
example that follows includes UIDs for SIMS 4.0 above site and site data sets for to be used starting FY19
Q2.

Validation of SIMS Data Payloads for DATIM Using R Validation Package 9

clearCache(force=TRUE)

dataElementIdScheme <- "code"

orgUnitIdScheme <- "id"

idScheme <- "code"

file_type <- "csv"

#VALIDATE AGENCY DATA

agencyname <- 'CDC'

dir <- "~/icf/projects/datim/SIMS_FY19Q1/"

filename <- "CDC_FY2019Q1.csv"

isoPeriod <- "2019Q1"

type <- "A"

filesHaveHeader <- FALSE

split <- TRUE

validateAgencyData(dir, filename, isoPeriod, type, filesHaveHeader,

split)

processFile <- function(filename, dir, isoPeriod, toolType, out_dir,

filesHaveHeader){

 file_summary <- c()

 file_summary["file"] <- filename

 path <- paste0(dir, filename)

 excludeInvalidOU <- FALSE

 excludeInvalidMechs <- TRUE

Validation of SIMS Data Payloads for DATIM Using R Validation Package 10

 file_summary <- c()

 file_summary["file"] <- filename

 print(paste("checking ", filename, toolType))

 if(toolType == "A"){

 dataSets <- c("O392zMXtwar") # sims 4.0 above site

 file_summary["type"] <- "above site"

 } else if(toolType == "S"){

 dataSets <- c("rnEToFucnJ9") # sims 4.0 site

 file_summary["type"] <- "site"

 }

 # parse using regular parser, used to identify period shifts and

overlapping assessments

 d <- d2Parser(file = path, type = file_type, dataElementIdScheme =

dataElementIdScheme, orgUnitIdScheme = orgUnitIdScheme, idScheme =

idScheme, invalidData = TRUE)

 # parse using SIMS parser

 d2 <- sims2Parser(file=path, dataElementIdScheme =

dataElementIdScheme, orgUnitIdScheme = orgUnitIdScheme, idScheme =

idScheme, invalidData=TRUE, hasHeader=filesHaveHeader,

isoPeriod=isoPeriod)

 file_summary["record count"] = length(d2$comment)

 file_summary["assessment count"] = length(unique(d2$comment))

 # identify overlapping assessments

 overlapping_assessment <- sqldf('select period, orgUnit,

attributeOptionCombo, count(distinct(storedby)) as assessment_count

Validation of SIMS Data Payloads for DATIM Using R Validation Package 11

from d group by period, orgUnit, attributeOptionCombo having

count(distinct(storedby)) > 1')

 if(nrow(overlapping_assessment) != 0) {

 write.csv(overlapping_assessment,file=paste0(out_dir, filename,

"_overlapping_assessment.csv"))

 # list assessments

 overlapping_assessment_list <- sqldf('select distinct d.period,

d.orgUnit, d.attributeOptionCombo, d.storedby from d join

overlapping_assessment o on d.period=o.period and d.orgUnit=o.orgUnit

and d.attributeOptionCombo = o.attributeOptionCombo')

 write.csv(overlapping_assessment_list,file=paste0(out_dir,

filename, "_overlapping_assessment_list.csv"))

 }

 file_summary["overlapping PE/OU/IM count"] =

length(overlapping_assessment$period)

 # identify period shifts

 d_unique = sqldf('select period, storedby from d group by period,

storedby')

 d2_unique = sqldf('select period, comment from d2 group by period,

comment')

 shifts_made = sqldf('select comment as assessment, d_unique.period

as old_period, d2_unique.period as new_period from d_unique join

Validation of SIMS Data Payloads for DATIM Using R Validation Package 12

d2_unique on d_unique.storedby = d2_unique.comment where

d_unique.period != d2_unique.period order by old_period')

 if(nrow(shifts_made) != 0)

write.csv(shifts_made,file=paste0(out_dir, filename,

"_shifts_made.csv"))

 file_summary["shifted_assessment_count"] = nrow(shifts_made)

 # identify any exact duplicates left (USAID had duplicates with same

assessment id)

 post_shift_duplicates <- getExactDuplicates(d2)

 # used to produce post-shift duplicates with codes

 de_map <- getDataElementMap()

 post_shift_duplicates_w_code <- sqldf('select de_map.code,

post_shift_duplicates.* from post_shift_duplicates left join de_map

on de_map.id = post_shift_duplicates.dataElement order by dataElement,

period, orgUnit, attributeOptionCombo')

 if(nrow(post_shift_duplicates_w_code) != 0)

write.csv(post_shift_duplicates_w_code,file=paste0(out_dir, filename,

"_post_shift_duplicates.csv"))

 file_summary["post shift duplicate count"] =

length(post_shift_duplicates_w_code$comment)

 # verify mechanism validity

 mechs <- checkMechanismValidity(d2)

 if(any(class(mechs) == "data.frame")){

 if(nrow(mechs) != 0){

 mech2 <- sqldf("select mechs.*, m2.comment as assessment_id from

mechs join (select distinct period, attributeOptionCombo, comment from

Validation of SIMS Data Payloads for DATIM Using R Validation Package 13

d2) m2 on mechs.period = m2.period and mechs.attributeOptionCombo =

m2.attributeOptionCombo")

 write.csv(mech2,file=paste0(out_dir, filename, "_mechs.csv"))

 }

 file_summary["invalid period mechanisms"] =

length(mechs$attributeOptionCombo)

 } else {

 file_summary["invalid period mechanisms"] = 0

 }

 # verify for bad data value

 bad_data_values <- checkValueTypeCompliance(d2)

 if(nrow(bad_data_values) != 0)

write.csv(bad_data_values,file=paste0(out_dir, filename,

"_bad_data_values.csv"))

 file_summary["bad data values"] =

length(bad_data_values$dataElement)

 invalid_orgunits <- checkDataElementOrgunitValidity(data=d2,

datasets=dataSets)

 if(any(class(invalid_orgunits) == "data.frame")){

 if(nrow(invalid_orgunits) > 0){

 invalidOUs <- sqldf('select distinct orgUnit from

invalid_orgunits')

 invalidOUAssessments <- sqldf('select comment as assessment_id,

period, orgUnit from d2 where orgunit in (select orgUnit from

invalidOUs) group by comment, period, orgUnit')

 if(nrow(invalid_orgunits) != 0) {

 write.csv(invalid_orgunits,file=paste0(out_dir, filename,

"_invalid_orgunits.csv"))

 write.csv(invalidOUAssessments,file=paste0(out_dir, filename,

"_invalid_orgunit_list.csv"))

Validation of SIMS Data Payloads for DATIM Using R Validation Package 14

 }

 file_summary["invalid org units"] = length(invalidOUs$orgUnit)

 file_summary["invalid ou assessments"] =

length(invalidOUAssessments$orgUnit)

 } else {

 file_summary["invalid org units"] = 0

 file_summary["invalid ou assessments"] = 0

 }

 } else {

 file_summary["invalid org units"] = 0

 file_summary["invalid ou assessments"] = 0

 }

 #filter out invalid mechanisms from output

 if(any(class(mechs) == "data.frame")){

 if(excludeInvalidMechs && nrow(mechs) != 0){

 d2 <- subset(d2,!(attributeOptionCombo %in%

mechs$attributeOptionCombo))

 }

 }

 # filter out invalid OUs

 d2_wo_invalidOU <- d2

 if(excludeInvalidOU){

 d2_wo_invalidOU <- subset(d2,!(orgUnit %in% invalidOUs$orgUnit))

 }

 file_summary["final record count"] = length(d2_wo_invalidOU$comment)

 file_summary["final assessment count"] =

length(unique(d2_wo_invalidOU$comment))

Validation of SIMS Data Payloads for DATIM Using R Validation Package 15

 write.table(as.data.frame(file_summary), file = paste0(out_dir,

filename, "_summary.txt"))

 # write out normalized data

 write.csv(d2_wo_invalidOU[,

c("dataElement","period","orgUnit","categoryOptionCombo","attributeOpt

Validation of SIMS Data Payloads for DATIM Using R Validation Package 16

ionCombo","value", "storedby", "timestamp", "comment")],

paste0(out_dir, filename, "_normalized.csv"), row.names=FALSE, na="")

 # all_data <<- rbind(all_data, d2_wo_invalidOU)

 return(file_summary)

}

validateAgencyData <- function(dir, filename, isoPeriod, type,

filesHaveHeader, split){

 out_dir <- paste0(dir, "out_", format(Sys.time(), "%y%m%d%H%M%S"),

"/")

 dir.create(file.path(out_dir), showWarnings = FALSE)

 # list of files in csv format. header: path, isoPeriod (calendar

period), facility (TRUE/FALSE)

 file_list_path <- paste0(dir, file_list)

 files <- read.csv(file_list_path)

 df <- NULL

 toolType <- type

 summary <- processFile(filename, dir, isoPeriod, toolType,

out_dir, filesHaveHeader=filesHaveHeader)

 df <<- rbind(summary, df)

 if(split){

 print(paste("splitting"))

 header <- c("de","pe", "ou", "coc", "aoc", "value", "comment")

 types <- c("A", "F", "C");

Validation of SIMS Data Payloads for DATIM Using R Validation Package 17

 f <- paste0(dir, filename)

 d <- read.csv(f, stringsAsFactors = FALSE, header =

filesHaveHeader)

 colnames(d) <- header

 #CS_ASMT_TOOL_TYPE: 2 = C, 3 = A, 1 = F

 assessment_types <- sqldf("select comment, case when value = '1'

then 'F' else case when value = '2' then 'C' else case when value =

Validation of SIMS Data Payloads for DATIM Using R Validation Package 18

'3' then 'A' else '' end end end as type from d where de =

'SIMS.CS_ASMT_TOOL_TYPE'")

 s <- 0

 for(i in 1 : length(types)){

 t <- types[i]

 d2 <- sqldf(paste0("select * from d where comment in (select

distinct(comment) from assessment_types where type = '", t, "')"))

 print(paste(t, nrow(d2)))

 if(nrow(d2) == 0){

 print("skipping")

 next

 }

 f2 <- paste0(filename, "_", t, ".csv")

 f2_path <- paste0(dir, f2)

 write.csv(d2, f2_path, row.names = FALSE)

 s <- s + nrow(d2)

 summary <- processFile(f2, dir, isoPeriod, t, out_dir,

filesHaveHeader=filesHaveHeader)

 file.remove(f2_path) #delete split file after processing

 df <<- rbind(summary, df)

 }

 print(paste("input file:", nrow(d), "sum of splits:", s))

 }

 row.names(df) <- 1:nrow(df)

 df <- as.data.frame(df)

 write.csv(df,file=paste0(out_dir, "_summary.csv"))

 return ()

}

Validation of SIMS Data Payloads for DATIM Using R Validation Package 19

writeoutChunked <- function(data, outputFolder, recordCount){

 #chunk data into 200K partitions

 chunk <- recordCount

 n <- nrow(data)

 r <- rep(1:ceiling(n/chunk),each=chunk)[1:n]

 d <- split(data,r)

 #spit out partitions as csv files

 for (name in names(d)) {

 print(paste(name, nrow(d[[name]])))

 file <- paste0(outputFolder, "partitition_", name, ".csv")

 write.csv(d[[name]], file, row.names=FALSE, na="")

 }

 return ()

}

processAgency <- function(data, mechanisms, agencyname, path){

 print(paste("processing ", agencyname))

 #get agency mechs

 agency_mechs <- subset(mechanisms,(agency == agencyname))

 print(paste(nrow(agency_mechs), "agency mechanisms"))

 #get data by mechanism

 d <- sqldf("select a.* from data a join agency_mechs m on

a.attributeoptioncombo = m.uid")

 print(paste(nrow(d), "records"))

 dir.create(file.path(path, "TO_DELETE"))

Validation of SIMS Data Payloads for DATIM Using R Validation Package 20

 writeoutChunked(d, paste0(path, "/TO_DELETE/") , 200000)

 return()

}

Replace values of the following variables with your values.

- dataElementIdScheme – code or id

- orgUnitIdScheme - code or id

- idScheme - code or id

- file_type – csv/json/xml/adx/pdf

- agencyname – DOD/CDC/USAID…

- dir – directory where the file is located

- filename – file name including file extension

- isoPeriod – YYYYQ1/2/3/4

- type – A/S/F/C/(A/C). A- Above site, S- Site, F- Facility, C- community, A/C- Above
site/community

- filesHaveHeader – TRUE/FALSE

Click on the “Source” button (found to the right of the “Run” button) to run the entire validation code.

If there are no validation errors in the file, you will see the following message displayed in the console.

Validation of SIMS Data Payloads for DATIM Using R Validation Package 21

Validation Errors

Users may encounter a number of different types of errors when running the validation script. A
descriptive error message, such as that shown in the following screen shot, will be displayed in the
console whenever the code encounters a validation error.

This table shows some of the common error messages and solutions.

Validation of SIMS Data Payloads for DATIM Using R Validation Package 22

Error Message Addressed by Solution

cannot open file
'/path/ImportFile.csv': No
such file or directory

d2Parser. Note that you have to
address all errors produced by

d2Parser before you can use other
validation functions.

Ensure that you entered the right
import file location for the ‘path’
argument

Start tag expected, '<' not
found

d2Parser This means you specified the
import file type as xml when it is
not an xml file. Make sure you
specify the correct file type.

Error in parse_con(txt,
bigint_as_char) :
 lexical error: invalid char
in json text.

d2Parser This means you specified the
import file type as json when it is
not a json file. Make sure you
specify the correct file type.

Error in type.convert …
 invalid multibyte string at
…

d2Parser This means you specified the
import file type as csv when it is
not a csv file. Make sure you
specify the correct file type.

Could not resolve host: d2Parser Make sure that the secrets file has
the correct DATIM URL specified
in the “baseurl” field.

Error in DHISLogin(s) :
Could not authenticate you

with the server!

d2Parser Make sure that the user name and
password pair specified in the
secrets file is correct.

Invalid data elements, org
units, category option
combos, or attribute
option combos

d2Parser Ensure that metadata in the
import file are correct. If using
UIDs, make sure that you maintain
case sensitivity and do not alter
them.

Error during wrapup:
missing value where
TRUE/FALSE needed

sims2Parser Make sure that isoPeriod is in the
correct format YYYYQ1/2/3/4.
Example- 2019Q1

Invalid data element/org
unit pairs

checkDataElementOrgunitValidity Make sure that a data element in
a row is valid for the org unit
specified in the same row.

Value type compliance
issues encountered

checkValueTypeCompliance Make sure that values are of the
correct data type; for example,
integer not character.

Mechanism validity issues
encountered

checkMechanismValidity Make sure that a mechanism in a
given row is valid for the period
specified in the same row.

